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 Barley grain is rich in mineral nutrients, but their bioavailability to humans depends 

on antinutrients that restrain bioavailability and promoters that promote bioavailability. 

The aim of this study was to examine composition of barley grain, including phytate and 

phenolics as antinutrients, carotenoids and glutathione as promoters and mineral ele-

ments, such as Ca, Mg, Fe, Si, Zn and Mn influenced by various non-standard foliar ferti-

lizers (Zircon, Chitosan, Siliplant, Propikonazole), including some hormonal growth-sti-

mulators (Epin Extra, Benzyladenine), as potential biofortification measure. Chitosan in-

creased glutathione concentration in grain. Unfavorable meteorological conditions were 

partly mitigated by application of Benzyladenine and Siliplant, reflected through increa-

sed potential bioavailability of P, Mg, Ca and Fe.  
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INTRODUCTION 

 

 Wholegrain products are necessary part of healthy diets as sources of dietary fiber and 

mineral nutrients. Among cereals, barley grain is the main source of P, Ca, K, Mg, Na, 

Cu and Zn (1), as well as of Si, which showed the positive effect on bones (2). Barley 

health benefits are provided by a β-glucan fiber fraction, which is associated with 

lowering of blood cholesterol levels, glycemic index and weight loss (3). 

 High concentration of mineral elements in cereal grains does not mean that they are 

available for humans. Antinutrients, as essential part of grain, like phytate, phenolics, 

etc., limit the absorption of mineral elements. Grains also contain promoters, such as β-

carotene, S-containing amino acids, etc., which enhance mineral nutrients bioavailability 

or decrease the activity of inhibitors (4, 5). Enrichment of grains with mineral elements 

and other important nutrients – biofortification is a very complex process. One of the 

strategies is the application of foliar fertilizers, which have also a positive effect on plant 

metabolism and grain yield (6).  
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 There are many different substances which foliarly applied influence accumulation of 

mineral nutrients in grains. For instance, Si can improve crop production by increasing 

water uptake, maintaining nutrient balance, promoting photosynthetic rate, increasing the 

activities of antioxidants (7, 8). Nevertheless, hormones could also increase stress tole-

rance and uptake of mineral nutrients, like brassinosteroids (9). Propiconazole, as a bras-

sinosteroid inhibitor (10) showed positive impact on barley and wheat grain yield and 

composition, decreasing phenolics and increasing carotenoids (11). Cytokinine, 6-benzyl-

adenine expressed positive effect on photosynthesis and antioxidants in salt stressed 

plants (12). Chitosan has ability to mitigate stress and to chelate minerals and other 

nutrients, and it is widely used in phytoremediation for heavy metal removal (13). 

 The aim of this study was to test various foliar fertilizers, including some hormonal 

growth-stimulators, as potential biofortification measure on chemical composition of bar-

ley grain, including phytate and phenolics as antinutrients, β-carotene and glutathione as 

promoters and mineral elements, such as Ca, Mg, Fe, Zn and Mn. 

 

EXPERIMENTAL 

 

Field trial 

 

 The grain of hull-less barley (Hordeum vulgare L. var. nudum; cv. “Apolon”) was 

produced in 2013 and 2014 at Zemun Polje (44o52'N, 20o20'E; 86 ± 3 m altitude). The 

experiment was set up in four replications. Foliar fertilizers were applied in recommen-

ded concentrations. Treatments included 0.335 ml L-1 of Epin Extra (24-epibrassinolide 

phytohormone with 0.025 g a.i. L-1); 0.3 ml L-1 of Zircon (Echinacea purpurea extract, 

with 0.1 g L-1 of phenolic acids: 3,4-dihydroxycinnamic (caffeic) acid, chlorogenic and 

cichoric acid); 1 ml L-1 of Chitosan (0.5% of polysaccharide chitosan, 3-4% of organic C, 

2-5% of organic N, 5% of amino acids and 10% of humic acids); 2 ml of 6-benzyladenine 

(technical grade 90%, syn. 6-BA or BAP); 3 ml of Siliplant (16.9±2.0 g L-1 of K, 

0.13±0.05 g L-1 of Mg, 72.0±4.0 g L-1 of Si, 0.45±0.1 g L-1 of Fe, 0.32±0.09 g L-1 of Mn, 

0.12±0.04 g L-1 of B, 0.08±0.03 g L-1 of Zn, 0.07±0.03 g L-1 of Cu and 0.02±0.01 g L-1 of 

Co); 0.2 ml of Propikonazole (PZR, technical grade 95%); control – without application 

of foliar fertilizers. First spraying for all treatments, except for BAP and PZR was per-

formed 45 days after emergence, while the second one was 60 days after emergence 

(when BAP and PZR were applied).  

 

Chemical analysis of barley grain 

 

 After harvesting the chemical composition of grain was determined. Phytic (Pphy) and 

inorganic (Pi) phosphorus were determined by the method of Dragičević et al. (14), and 

total glutathione (GSH) by the method of Sari Gorla et al. (15), after extraction with 5% 

trichloroacetic acid. The extract was centrifuged at 12,000 rpm for 15 min (Dynamica – 

Model Velocity 18R Versatile Centrifuge, Rotor TA15-24-2) at 4oC. Pphy was determined 

on a Biochrom Libra S 22 spectrophotometer, based on the pink color of the Wade rea-

gent, which is formed upon the reaction of ferric ion and sulfosalicilic acid, and has an 
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absorbance maximum at λ=500 nm. Pi was determined after adding of ammonium hepta-

molybdate + ammonium metavanadate solution to the extract and measuring the absor-

bance at λ=400 nm. GSH was determined by adding 0.2 M potassium phosphate buffer 

(pH = 8.0) and 10 mM DTNB (5.5'-dithio(2-nitrobenzoic acid)) to the extract and measu-

ring the absorbance at 415 nm. Water soluble phenolics were determined by the method 

of Simić et al. (16), after extraction with double distilled water and centrifugation at 

12000 rpm for 15 min, by adding 0.05 M FeCl3 in 0.1 M HCl and 0.008 M K3Fe(CN)6 to 

sample solution; the absorbance was measured at λ=722 nm. Phenolic content was ex-

pressed in μg of ferulic acid (FAE) equivalent. Yellow pigment (β-carotene) concentra-

tion was determined according to the AACC procedure (17), after extraction with 1-buta-

nol and centrifugation at 10,000 rpm for 5 min; the absorbance was measured at λ=436 

nm. 

 After wet digestion with HNO3 + HClO4, the Ca, Mg, Fe, Mn, Zn and Si contents 

were determined by Inductively Coupled Plasma - Optical Emission Spectrometry (Spec-

tro Analytical Instruments, Germany). 

 

Statistical analysis 

 

 Chemical composition of the barley grain is present as mean ± standard deviation 

(SD). The ratios between Pphy and Pi, phytate, β-carotene, Ca, Mg, Fe, Zn and Mn could be 

considered as parameters of potential bioavailability of examined mineral elements and the 

differences between treatments means were tested by ANOVA, with Fisher’s least signi-

ficant difference (LSD) test at the 0.05 probability level.  

 

RESULTS AND DISCUSSION 

 

Meteorological conditions 

 

 Meteorological conditions had opposite trend in two experimental years. The differen-

ce in temperature between the seasons was negligible (Table 1), with the amount of preci-

pitation being almost 2.5 times higher in 2014 than in 2013, that is near a 20-year avera-

ge. The highest value of precipitation was obtained in May for both 2013 and 2014 

(102.1 and 286.7 mm, respectively). 

 

Table 1. Average monthly air temperatures and precipitation sums from March to July 

for 2013, 2014 and period 1991-2010, at Zemun Polje 

 

 

Month March April May June July Average/Σ 

T average 

(°C) 

2013 7.3 14.8 19.5 21.3 24.1 17.4 

2014 11.3 14.1 17.0 21.5 23.3 17.5 

1991-2010 7.9 12.4 17.8 21.0 22.8 16.4 

Σ precipitation 

(mm) 

2013 95.5 21.7 102.1 49.8 2.7 271.8 

2014 48.6 85.4 286.7 59.5 250.0 730.2 

1991-2010 44.9 48.5 52.5 83.7 63.8 293.4 
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 Antioxidants in barley grain. Negative conditions present during 2014 affected con-

centrations of main antioxidants: yellow pigments, GSH and phenolics (Figure 1). Seve-

ral times higher concentrations of yellow pigment and almost twice higher concentration 

of GSH and phenolics in 2013, compared to 2014 were obtained. The highest values of 

yellow pigment and GSH were in Chitosan treatment in 2014 (0.48 µg g-1 and 514.8 nmol 

g-1, respectively), and in 2013 insignificantly higher in control (4.39 µg g-1 and 930.5 

nmol g-1, respectively). Phenolics had the highest value in Chitosan and in PZR treat-

ment, in 2013 (2275.1 µg g-1 and 2325.0 µg g-1, respectively) and in Siliplant and PZR 

treatments in 2014 (1758.9 µg g-1 and 1799.9 µg g-1, respectively). 

 Concentrations of Pphy and Pi also showed differences among experimental seasons, 

with slightly higher Pphy and lower Pi values obtained in 2013, compared to 2014 (Figure 

2). Slight variations among treatments indicated that higher Pphy values were obtained in 

control of both years (4.56 and 4.22 mg g-1 in 2013 and 2014), while the lowest values 

were in Chitosan treatment (4.17 and 3.93 mg g-1, respectively). Epin Extra increased Pi 

values in 2013 and 2014 (0.86 and 1.05 mg g-1, respectively). Brassinosteroids expressed 

the increased activity of enzymatic and nonenzymatic antioxidants, subsiding the harmful 

effect of salinity and heavy metal stress in bean plants (18).  

 

 
 

Figure 1. The effect of different foliar fertilizers on concentration of yellow pigment (β 

carot.), glutathione (GSH) and phenolics in barley grain (C – control, EE – Epin Extra, 

Zir. – Zircon, Chit. – Chitosan, BAP – Benzyladenine, Silip. – Siliplant,  

PZR – Propikonazole); Mean ± SD (standard deviation) 
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Figure 2. The effect of different foliar fertilizers on concentration of phytic (Pphy) and 

inorganic (Pi) phosphorus in barley grain (C – control, EE – Epin Extra, Zir. – Zircon, 

Chit. – Chitosan, BAP –Benzyladenine, Silip. – Siliplant, PZR – Propikonazole);  

Mean ± SD (standard deviation) 
 

 Mineral elements in barley grain. Meteorological conditions have also influenced 

accumulation of mineral elements in grain. This was especially true for Si, whose con-

centration was significantly (five times) lower in 2014 (Figure 3), and was opposite to the 

results of Ma et al. (2), who did not find significant impact of the year on Si variation in 

barley. Higher variations were observed among treatments in Ca concentration in 2014 

compared to 2013.  
 

 
 

Figure 3. The effect of different foliar fertilizers on Ca, Mg and Si concentration in 

barley grain (C – control, EE – Epin Extra, Zir. – Zircon, Chit. – Chitosan,  

BAP – Benzyladenine, Silip. – Siliplant, PZR – Propikonazole);  

Mean ± SD (standard deviation) 
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Figure 4. The effect of different foliar fertilizers on Fe, Zn and Mn concentration in 

barley grain (C – control, EE – Epin Extra, Zir. – Zircon, Chit. – Chitosan, BAP – 

Benzyladenine, Silip. – Siliplant, PZR – Propikonazole); Mean ± SD (standard deviation) 

 

 Epin Extra highly influenced Mg concentration, similarly to the results of Lachman et 

al. (19), as well as the concentrations of microelements, Fe, Zn and Mn (Figure 4), simi-

larly to the results of Dragičević et al. (20), but under favorable meteorological condi-

tions. Besides, higher Ca concentrations were observable in BAP treatment for 2013 and 

2014 (395.0 and 362.8 mg kg-1, respectively), according to the results of Gurmani et al. 

(21), who obtained higher Ca concentrations in wheat plants treated with BAP under 

saline and non-saline conditions. Furthermore, Siliplat was the most important fertilizer 

for Si increase in barley grain (414.7 and 60.4 mg kg-1, for 2013 and 2014), as well as for 

Zn and Mn increase during unfavorable, 2014 (13.59 and 3.58 mg kg-1, respectively), 

confirming that Si plays an important role in osmotic adjustment and regulation of the 

hormonal plant status under stress conditions (8).  

 

Table 2. The effect of different foliar fertilizers on the relations between phytic and inorganic 

P, phytate, yellow pigment, Mg, Ca, Fe, Zn and Mn in barley (cv. Apolon) grain 
 

 
* Least significant difference, P = 0.05 (n = 4); The values followed by same letters are not significantly 

different at the 0.05 level; **n.sThe values are under the level of significance of 0.05. 

Treatment Pphy/Pi Phy/yell.pigm. Phy/Mg Phy/Ca Phy/Fe Phy/Zn Phy/Mn 

Control 5.10
 **n.s.

 5356.60
 n.s.

 2.15 
b
 2.86

 ab
 107.34

 b
 40.22

 n.s.
 74.1 

b
 

Epin extra 4.58
 n.s.

 5242.48
 n.s.

 2.11
 ab

 2.68
 ab

 100.90
 b
 27.52

 n.s.
 60.0

 a
 

Zircon 4.62
 n.s.

 5411.22
 n.s.

 2.14
 a
 3.11 

b
 103.15

 b
 37.21

 n.s.
 71.0

 ab
 

Chitosan 4.60
 n.s.

 5088.97
 n.s.

 2.14
 a
 4.21 

c
 72.38

 a
 34.10

 n.s.
 70.1

 ab
 

Benzyladenine 4.60
 n.s.

 5349.25
 n.s.

 2.03
 a
 2.36

 a
 62.91

 a
 31.81

 n.s.
 69.1

ab
 

Siliplant 4.47
 n.s.

 5610.72
 n.s.

 2.05
 ab

 2.96 
b
 51.13

 a
 28.70

 n.s.
 76.1

 b
 

Propikonazole 4.74
 n.s.

 5828.46
 n.s.

 2.16 
b
 2.96 

b
 55.46

 a
 35.80

 n.s.
 80.3

 b
 

LSD 0.05* 0.8 2397.6 0.11 0.58 26.27 15.66 10.43 
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 The highest Fe concentration in barley grain was observed in Epin Extra treatment (23.9 

and 18.9 mg kg-1, for 2013 and 2014). Insignificantly higher Fe and Mn concentrations in 

control plants were obtained in 2013, due to the drought present during the grain filling pe-

riod, similarly to the results of Hussein et al. (22) who also found lower concentrations of both 

elements in grain of barley sprayed with amino acid fertilizers in combination with water de-

ficit. It could be supposed that foliar treatments, irrespective of the formulation applied, slight-

ly reduced accumulation of some promoters, such yellow pigment and GSH (Figure 1), as 

well as some mineral elements (Fe and Mn; Figure 4) in dry conditions. However, positive 

impact of applied fertilizers on accumulation of examined elements was mainly related to 

hormone preparations, such as EE and BAP, as well as silicone fertilizer Siliplant, illustrating 

their complex role in plant metabolism and stress tolerance (8, 9, 12), which can also reflect 

on increased nutrients acquiring in barley grain. 

 Potential bioavailability of mineral elements. Considering the relations between Phy, Pi, 

yellow pigments, Mg, Ca, Fe, Zn and Mn, the highest values were mainly obtained in PZR 

treatment, with significant differences observed between the values of Phy/yellow pigment, 

Phy/Mg, Phy/Ca, Phy/Fe and Phy/Mn (Table 2). The lowest values of Phy/Zn and Phy/Mn 

were in hormone, Epin Extra treatment (25% and 23% lower in relation to PZR, respectively), 

while the significantly lowest values of Phy/Mg and Phy/Ca were in BAP treatment (6% and 

44% lower in relation to PZR, respectively). Siliplant was characterized by the significantly 

lowest values of Phy/Fe in relation to control (12% and double, respectively) and Chitosan 

with significantly lowest Phy/yellow pigment (13% in relation to PZR). While Chitosan 

mainly decreased Pphy concentration, the increased concentrations of examined mineral ele-

ments influenced by Siliplant and hormone preparations Epin Extra and BAP were mainly 

reflected on decrease of the ratio between phytate and mineral elements, contributing to their 

better bioavailability to humans (4).  

 

 

CONCLUSION 

 

 The obtained results indicate that the year of cultivation influenced the chemical com-

position of barley grain, mainly increasing concentrations of promoters, antinutrients and 

mineral elements during dry season. The highest impact of unfavorable conditions with 

high precipitation level was for Si, decreasing its concentration several times. Among ap-

plied treatments, Chitosan was the most effective for increasing of promoters’ level, and 

reducing of Phy/yellow pigment ratio, thus increasing potential bioavailability of the 

examined mineral elements. Moreover, unfavorable meteorological conditions were par-

tially mitigated by application of Siliplant and hormone preparations: EE and BAP, thus 

increasing potential bioavailability of P, Mg, Ca and Fe.  
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 Зрно јечма је богато минералима, али њихова приступачност за људски органи-

зам зависи од антинутритива који инхибирају њихову апсорпцију и промотера који 

повећавају њихову приступачност. Циљ истраживања је да се испита састав зрна 

јечма, укључујући фитат и феноле као антинутритиве, каротеноиде и глутатион као 

промотере, као и минералне елементе Ca, Mg, Fe, Si, Zn и Mn, под утицајем не-

стандардих фолијарних ђубрива (Циркон, Хитосан, Силиплант, Пропиконазол), као 

и хормона (Епин Екстра, Бензиладенин), као потенцијалне мере за биофортифи-

кацију јечма. Хитосан је повећао концентрацију глутатиона. Неповољни метеоро-

лошки услови су делимично превазиђени применом Бензиладенина и Силипланта, 

који су утицали на повећање потенцијалне приступачности P, Mg, Ca i Fe.  

 

Кључне речи: хемијски састав зрна јечма, антиоксиданти, минерaлни елементи, 

биофортификација 
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